[Dip1] (μM)	Best-fit Frictional Ratio	rmsd	c(S) (% of total)	sw(20,w)	Calculated MW (Da)	Frictional coefficient
6.9	1.38	0.0049	96.7	3.3	50,300	0.64
13.7	1.22	0.0066	95.0	3.4	43,200	0.54
20.6	1.23	0.0079	94.8	3.4	43,600	0.54
			c(S) (% of total)	sw(20,w)	Calculated MW (Da)	Frictional coefficient
			1.74	5.1	95,700	0.80
			3.00	5.6	91,000	0.69
			4.54	4.7	70,900	0.64

Table S1: Results of sedimentation velocity fits, Related to Figure 1: Sedimentation velocity analytical ultracentrifugation analysis showing that Dip1 is predominantly or entirely a dimer, even at high concentrations. The top portion of the tables corresponds to the analysis of a presumed Dip1 monomer peak. The bottom portion of the table is the analysis of a peaks with higher S values, which may correspond to a weak Dip1 oligomer or a minor contaminant. c(S) is the sedimentation coefficient distribution. sw(20,w) is the signal-weighted average sedimentation coefficient corrected to standard conditions of water at 20 °C.